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Abstract

Our approach to the PhysioNet Challenge 2025 centers
on a custom Ranking Aware Tversky (RAT) loss, explicitly
designed to align optimization with the competition metric:
true positive rate among the top 5% of ranked predictions
(TPR@5%). While standard objectives such as Binary
Cross-Entropy and Focal Loss optimize average accuracy,
they fail to prioritize the high-confidence predictions criti-
cal for this task. RAT introduces a differentiable soft top-
k weighting that emphasizes the most confident predic-
tions, penalizes overconfident false positives through en-
tropy regularization, and stabilizes training with a BCE
anchor. To improve representation learning under severe
class imbalance, we incorporate lightly weighted super-
vised contrastive learning, which further enhances intra-
class cohesion and inter-class separation. Combined with
a ResNet-18 backbone augmented by Group Normaliza-
tion and Squeeze-and-Excitation modules, RAT consis-
tently outperformed baseline losses in local validation,
achieving the highest TPR@5%. These results highlight
the importance of explicitly rank-aware loss design for
ranking-based evaluation metrics in imbalanced clinical
datasets. Our team CHA-CruzControl received an official
challenge score of 0.05; however, this reflects a submission
bug that caused all-negative predictions during inference
rather than the true capability of our model.

1. Introduction

In clinical risk prediction tasks, accurate identification
of a small set of high-confidence positives can be more
valuable than optimizing overall accuracy. The PhysioNet
[1] Challenge 2025 [2,3] embodies this setting by evaluat-
ing submissions with the true positive rate among the top
5% of predictions (TPR@5%). Recent efforts to address
class imbalance in medical data have proposed asymmet-
ric objectives, such as the Tversky [4] and Focal losses [5],
yet these approaches still treat all predictions uniformly
and fail to align with ranking-based metrics. Moreover, se-
vere label imbalance exacerbates the risk of overconfident
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false positives, undermining performance in practice.

2. Material & Methods

The challenge training data combined multiple hetero-
geneous ECG datasets with substantial differences in pop-
ulation composition, recording protocols, and label quality.
These variations introduce distributional shifts between
subsets, while the overall dataset is highly imbalanced,
with Chagas-positive cases representing only a small mi-
nority. Together, this heterogeneity and skewed class dis-
tribution necessitated careful preprocessing and training
strategies robust to both imbalance and domain shift.

Demographic variables such as age and sex were also
unevenly distributed across datasets and conditions. We
did not include them as model inputs in order to avoid
learning spurious demographic shortcuts, focusing instead
on ECG-derived features.

2.1. Preprocessing

Raw ECG recordings from CODE-15, SaMi-Trop, and
PTB-XL [6-8] varied in duration and exhibited com-
mon artifacts (baseline wander, high-frequency noise). To
reduce inter-dataset variability and focus the model on
disease-related morphology, we applied a uniform pipeline
to all samples.

Iteration 1 (vl1). We computed per-lead global mean
and standard deviation across the entire dataset and applied
per-lead z-normalization to every recording. As a qualita-
tive sanity check of cross-dataset harmonization (not used
for model selection), we embedded channel-level sum-
mary features with UMAP (10 statistics x 12 leads: mean,
SD, min, max, peak-to-peak, interquartile range, skew-
ness, kurtosis, RMS, zero crossings).

Iteration 2 (v2). To further improve inter-dataset har-
monization we applied a zero-phase band-pass filtering
(0.5-45Hz) and a per-lead soft clipping to the 1st-99th
empirical percentiles of each dataset. For all further exper-
iments, v2 was used. We did not conduct formal AUROC
or TPR@5% comparisons between vl and v2; the transi-
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tion was motivated by the need to standardize input charac-
teristics across datasets based on qualitative assessments.
A systematic quantitative comparison will be included in
future work.

2.2. Model Architecture
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Figure 1. Network architecture supervised and contrastive
learning for ECG classification. Left: model overview
with classification head and projection head for contrastive
loss. Middle: residual block with skip connection and
Squeeze—Excitation (SE) block. Right: SE block speci-
fications.

We adapted a ResNet-18 backbone [9] to one-
dimensional convolutions for 12-lead ECG classification.
ResNet-18 was chosen for its simplicity and computational
efficiency, and because it has previously shown strong per-
formance in ECG-based tasks [10]; deeper variants were
not explored in this work. Batch normalization occasion-
ally inhibited learning in our imbalanced setting, likely
due to uneven statistics across batches. Therefore, all
batch normalization layers were replaced with Group Nor-
malization (GN) [11] (group size = 8). Squeeze-and-
Excitation (SE) modules [12] were inserted in each resid-
ual block, following the original design with a reduction
ratio of 16. Finally, in addition to the standard classifica-
tion head, we appended a two-layer MLP projection head
for supervised contrastive training. Supervised contrastive
training was motivated by the heavily imbalanced class
distribution, aiming to learn generalizable ECG features.
The final architecture is illustrated in Figure 1.

2.3. Training and Hyperparameters

We trained for 25 epochs with a learning rate of 1 x 10~*
using AdamW [13] and a One-Cycle scheduler (PyTorch
Lightning [14]); longer runs did not yield additional gains,
so we favored more repeats over more epochs. Data were
split into 5 folds stratified by age, sex, and Chagas label.

To address imbalance, we enforced 10% positives per
batch via a WeightedRandomSampler—with batch
size 256 this yields 26 positives per batch, providing a
stable minority gradient and enough positive pairs for Sup-
Con while staying closer to the real ( 2%) prior than 50/50
oversampling—and, within each class, we oversampled
strong labels (SaMi-Trop positives, PTB-XL negatives) to
25% to prioritize high-confidence supervision without let-
ting a single source dominate.

Augmentation was intentionally minimal to align with
our denoising preprocessing: segment masking (<100
samples), lead dropout (p=0.1), Gaussian noise (¢=0.01),
and time warping (<15%).

2.4. Baselines

The evaluation metric for this challenge was the true
positive rate (TPR) among the top 5% of ranked predic-
tions (TPR@5%). This metric prioritizes highly confi-
dent correct predictions while strongly penalizing overcon-
fident false positives, making it poorly aligned with stan-
dard loss functions such as Binary Cross-Entropy (BCE)
or Focal Loss, which optimize overall accuracy rather than
top-ranked precision. Additionally, the dataset exhibits se-
vere class imbalance, further complicating optimization.

We first evaluated two baseline losses: Binary Cross-
Entropy (BCE), the conventional choice for binary classi-
fication and Focal Loss [5], designed to emphasize hard
examples by down-weighting easy negatives (o« = 0.9,
~ = 1.5). While these loss functions are common choices
for binary classifications, they do not sufficiently align
with TPR@5%, as all predictions contribute equally re-
gardless of their ranking.

2.4.1. Supervised Contrastive Loss

To improve discriminative representation learning un-
der severe class imbalance, we incorporate contrastive loss
strategies [15], applied on the projection head. These
losses encourage intra-class cohesion and inter-class sep-
aration, complementing the main classification objective.
The contrastive losses were added to all tested loss func-
tions as a weighted sum:

L= ESupervised + )\3£Contrastive (1)

As contrastive loss functions we used the Prototype loss
(PT) and the supervised contrastive loss (SC) as defined
in [15]. Prototypes were initialized randomly, and the pro-
jection head was used only during training.

We investigated different weighting strategies when
combining them the contrastive loss with the supervised
loss. We compared two approaches:

« Magnitude matching: down-weighting the contrastive
loss such that its scale matches that of the supervised loss.

Page 2



« Full contribution: assigning equal weight (A3 = 1) to
both losses, even when their absolute scales differed by an
order of magnitude.

This analysis allowed us to assess whether the con-
trastive losses improved performance only when carefully
balanced against the classification objective, or whether
stronger unweighted contributions were beneficial.

3. Ranking-Aware Tversky Loss

To address the TPR@5% metric, we developed a loss
guided by three principles: prioritizing the most confident
predictions through a soft top-k mechanism, mitigating
overconfidence in negative predictions via entropy regu-
larization, and promoting robust feature learning with aux-
iliary representation-based objectives, while maintaining
training stability with a BCE anchor.

To align optimization with TPR@5%, we introduce a
soft weighting scheme that emphasizes top-ranked predic-
tions. Let p; = o(x;) denote the predicted probability for
sample 4, and y; € {0, 1} its label. Define p; as the top-k
predictions, where k corresponds to 5% of the batch size.
We compute a soft mask:

m; = U(ZH_min(pAi)> 7 2)
0.5

which assigns higher weights to samples near the
top-k threshold while maintaining differentiability. The
weighted counts of true positives (TP), false positives (FP),
and false negatives (FN) are:

TP = mipiyi,
FP = Zmipi(l — i),

%

These terms are integrated into the Tversky index loss [4]
making it a rank aware:

TP + ¢
TP +aFP + B8FN + ¢’

3

ERankTversky =1

We set « = (0.6, and 3 = 0.4 to penalize false positives
more strongly(fn line wBith the classpimgalzance. Tc? encour-

age diverse predictions, we introduce an entropy term for a
batch of size IV, that punishes predicted probabilities close
to 0.5:

pilogp; + (1 —p;) log(l — p;
ﬁEmmpy:Zzp gp (Np) gl=p)

Finally, we add a BCE term to maintain gradient stability
and avoid degenerate minima during early training.

The complete objective is a Ranking-Aware Tversky
Loss (RAT):

RAT = ERankTversky + )\1£Entropy + )\ZEBCEa (5)

where A\; = 0.005 and A\, = 0.1 controls auxiliary loss
weighting.

This formulation directly targets TPR@5% by concen-
trating on the top-ranked predictions, reducing overcon-
fidence in negatives. Compared to conventional Tver-
sky Loss, our approach selectively emphasizes high-
confidence true positives while incorporating regulariza-
tion and stability mechanisms.

4. Results

The results of all experiments and contrastive loss abla-
tions are summarized in Table 1. All metrics reported are
threshold independent and are computed on a local valida-
tion fold using bootstrapping.

Table 1. Classification performance across loss functions
with supervised contrastive (SC) and prototype (PT) strate-
gies under different weightings. Metrics: challenge score
(TPR@5%), AUROC, and AP, reported as percentages.
Shown is the mean 4= SD over 103 bootstrap runs on the
validation part of the training set. For each loss, the best
configuration is underlined; the overall best is in bold.

Loss Contrastive TPR@5% AUROC AP
BCE 40.54+1.21 81.38+059 18.48+0.99
+ 0.05xSC 40.39+1.20 80.74+0.59 17.91 40094
+ 1.00xSC 39.54+116 81.21+0s8 16.42+034
+ 0.05xPT 41.06+1.17 81.15+058 18.04+0.92
+ 1.00xPT 38.50+1.15 80.77 +o0.56 16.33 4059
Focal 40.21+1.20 80.90-+0.59 17.78 +098
+ 0.01xSC 40.04+1.11 81.33+0s5 16.27 +036
+ 1.00xSC 38.39+1.10 80.92+0.56 15.59+031
+ 0.01xPT 41.194+1.22 81.67 +0.59 18.77+1.01
+ 1.00xPT 36.70+1.14 79.90+0.60 15.01+0.79
RAT (ours) 41.77+118 81.14+058 17.64+0.93
+ 0.05xSC 42.03+1.23 81.42+0s58 17.38+092
+ 1.00xSC 41.09+1.19 81.29+0.59 16.76 034
+ 0.05xPT 41.81+1.17 81.58+0.58 17.17 +001
+ 1.00xPT 40.57 +1.16 80.61+0.58 16.69+0.:s8

4.1. Contrastive Loss Consistently Im-
proves Ranking Performance

Across all evaluated objectives, adding a weighted con-
trastive term (A3 < 1, see Section 2.4.1) improved perfor-
mance on the challenge metric TPR@5%. In combination
with BCE loss, contrastive learning did not yield measur-
able gains in AUROC or AP, suggesting its benefit is pri-
marily in ranking the most confident positives rather than
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improving overall discrimination. Similarly, when com-
bined with our proposed RAT loss, contrastive learning en-
hanced TPR@5% and AUROC, but had little effect on AP.

4.2. RAT Outperforms Standard Losses

Both BCE and Focal loss achieved comparable
TPR@5% values in the range of 37-41%. In contrast,
RAT consistently reached higher TPR@5% (41-42%)
and showed the greatest robustness across different con-
trastive loss weightings. While RAT was the strongest per-
former on the challenge metric, it is noteworthy that Fo-
cal loss combined with prototype-based contrastive learn-
ing achieved the highest AUROC and AP overall. This
highlights that optimizing for TPR@5% and optimizing
for global discrimination metrics are not fully aligned, and
that RAT is particularly effective for ranking-based evalu-
ation.

5. Discussion

Prior Chagas—-ECG work has largely trained CNNs
with cross-entropy and reported global metrics (AU-
ROC/AUPRC) rather than top-k recall; for example,
Jidling et al. [10] trained a 12-lead CNN on CODE
and SaMi-Trop and evaluated AUROC/AP, without rank-
aware optimization. In contrast, our Ranking-Aware
Tversky (RAT) loss directly targets the Challenge metric
(TPR@5%) by prioritizing the highest-confidence slice of
predictions under the 98:2 imbalance, yielding consis-
tent gains over canonical objectives. This metric-aligned
design is technically relevant—optimizing the part of the
ranking that matters—and clinically practical for screen-
ing, where limited confirmatory testing capacity favors
surfacing the most likely positives. Future work will vali-
date on the hidden test set and systematically study weights
for auxiliary losses.
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